What is UV Radiation?
All radiation is a form of energy, most of which is invisible to the human eye. UV radiation is only one form of radiation and it is measured on a scientific scale called the electromagnetic (EM) spectrum.
UV radiation is only one type of EM energy you may be familiar with. Radio waves that transmit sound from a radio station’s tower to your stereo, or between cell phones; microwaves, like those that heat your food in a microwave oven; visible light that is emitted from the lights in your home; and X-rays like those used in hospital X-ray machines to capture images of the bones inside your body, are all forms of EM energy.
UV radiation is the portion of the EM spectrum between X-rays and visible light.
What are the different types of UV radiation?
The most common form of UV radiation is sunlight, which produces three main types of UV rays:
UVA
UVB
UVC
UVA rays have the longest wavelengths, followed by UVB, and UVC rays which have the shortest wavelengths. While UVA and UVB rays are transmitted through the atmosphere, all UVC and some UVB rays are absorbed by the Earth’s ozone layer. So, most of the UV rays you come in contact with are UVA with a small amount of UVB.
Like all forms of light on the EM spectrum, UV radiation is classified by wavelength. Wavelength describes the distance between the peaks in a series of waves.
UVB rays have a short wavelength that reaches the outer layer of your skin (the epidermis)
UVA rays have a longer wavelength that can penetrate the middle layer of your skin (the dermis)
What is UVC Radiation?
UVC radiation is the highest energy portion of the UV radiation spectrum.
UVC radiation from the sun does not reach the earth’s surface because it is blocked by the ozone layer in the atmosphere. Thus, the only way that humans can be exposed to UVC radiation is from an artificial source like a lamp or laser.
Can UVC lamps inactivate the SARS-CoV-2 coronavirus?
UVC radiation is a known disinfectant for air, water, and nonporous surfaces. UVC radiation has effectively been used for decades to reduce the spread of bacteria, such as tuberculosis. For this reason, UVC lamps are often called "germicidal" lamps.
UVC radiation has been shown to destroy the outer protein coating of the SARS-Coronavirus, which is a different virus from the current SARS-CoV-2 virus. The destruction ultimately leads to inactivation of the virus.
UVC radiation may also be effective in inactivating the SARS-CoV-2 virus, which is the virus that causes the Coronavirus Disease 2019 (COVID-19).
However, currently there is limited published data about the wavelength, dose, and duration of UVC radiation required to inactivate the SARS-CoV-2 virus.
In addition to understanding whether UVC radiation is effective at inactivating a particular virus, there are also limitations to how effective UVC radiation can be at inactivating viruses, generally.
Direct exposure: UVC radiation can only inactivate a virus if the virus is directly exposed to the radiation. Therefore, the inactivation of viruses on surfaces may not be effective due to blocking of the UV radiation by soil, such as dust, or other contaminants such as bodily fluids.
Dose and duration: Many of the UVC lamps sold for home use are of low dose, so it may take longer exposure to a given surface area to potentially provide effective inactivation of a bacteria or virus.
UVC radiation is commonly used inside air ducts to disinfect the air. This is the safest way to employ UVC radiation because direct UVC exposure to human skin or eyes may cause injuries, and installation of UVC within an air duct is less likely to cause exposure to skin and eyes.
There have been reports of skin and eye burns resulting from improper installation of UVC lamps in rooms that humans can occupy.
Can UVB or UVA radiation inactivate the SARS-CoV-2 coronavirus?
UVB and UVA radiation is expected to be less effective than UVC radiation at inactivating the SARS-CoV-2 coronavirus.
UVB: There is some evidence that UVB radiation is effective at inactivating other SARS viruses (not SARS-CoV-2). However, it is less effective than UVC at doing so and is more hazardous to humans than UVC radiation because UVB radiation can penetrate deeper into the skin and eye. UVB is known to cause DNA damage and is a risk factor in developing skin cancer and cataracts.
UVA: UVA radiation is less hazardous than UVB radiation but is also significantly (approximately 1000 times) less effective than either UVB or UVC radiation at inactivating other SARS viruses. UVA is also implicated in skin aging and risk of skin cancer.
Is it safe to use a UVC lamp for disinfection purposes at home?
Consider both the risks of UVC lamps to people and objects and the risk of incomplete inactivation of virus.
Risks: UVC lamps used for disinfection purposes may pose potential health and safety risks depending on the UVC wavelength, dose, and duration of radiation exposure. The risk may increase if the unit is not installed properly or used by untrained individuals.
Direct exposure of skin and eyes to UVC radiation from some UVC lamps may cause painful eye injury and burn-like skin reactions. Never look directly at a UVC lamp source, even briefly.
Some UVC lamps generate ozone. Ozone inhalation can be irritating to the airway.
Some UVC lamps contain mercury. Because mercury is toxic even in small amounts, extreme caution is needed in cleaning a lamp that has broken and in disposing of the lamp.
Effectiveness: The effectiveness of UVC lamps in inactivating the SARS-CoV-2 virus is unknown because there is limited published data about the wavelength, dose, and duration of UVC radiation required to inactivate the SARS-CoV-2 virus. It is important to recognize that, generally, UVC cannot inactivate a virus or bacterium if it is not directly exposed to UVC. In other words, the virus or bacterium will not be inactivated if it is covered by dust or soil, embedded in porous surface or on the underside of a surface.
To learn more about a specific UVC lamp, you may want to:
Ask the manufacturer about the product’s health and safety risks and about the availability of instructions for use/training information.
Ask whether the product generates ozone.
Ask what kind of material is compatible with UVC disinfection.
Ask whether the lamp contains mercury. This information may be helpful if the lamp is damaged and you need to know how to clean up and/or dispose of the lamp.